_ U

AD-A264 793
L

NASA Contractor Report 191443
ICASE Report No. 93-12

ICASE B
Ezfé‘ﬁ‘éﬁfe

A MODELING STUDY OF THE TPC-C BENCHMARK

DTIC

ELECTE
MAY 2 6 1993
Scott T. Leutenegger A

Daniel Dias

This dorument has been approved
for public telecss and sale; its
distributioa is unlimited.

J—1

NASA Contract Nos. NAST- 19480 and NAST-1¥605
March 1993

Institute for Computer Applications in Scieace and Engineering
NASA Langley Research Center
Hampton, Virginia 23681-0001

Operated by the Universities Space Research Association

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-0001 "" 1 1 832

\\l\\\\\\\ \\\ IR




3oL YRR

ot 4

A Modeling Study of the TPC-C Benchmark

Scott T. Leutenegger * Daniel Dias
ICASE: Institute for Computer Applications IBM Research Division
in Science and Engineering T.J. Watson Research Center
Mail Stop 132¢ P.O. Rox 704
NASA Langley Research Center Yorktown Heights, NY 10598
Hampton, VA 23681-0001 . dias@watson.ibm.com
leut@icase.edu
Abstract

The TPC-C benchmark is a new benchmark approved by the TPC council intended for com-
paring database platforms running a medium complexity transaction processing workload. Some
key aspects in which this new benchmark differs from the TPC-A benchmark are in having several
transaction types, some of which are more complex than that in TPC-A, and in having data access
skew. I[n this paper we present results from a modelling study of the TPC-C benchmark for hoth
single node and distributed database management systems. We simulate the TPC-C workload to
determine expected buffer miss rates assuming an LRU buffer management policy. These miss rates
are then used as inputs to a throughput model. ;From these models we show the following: (i) We
quantify the data access skew as specified in the benchmark and show what fraction of the accesses
go to what fraction of the data. (ii) We quantify the resulting buffer hit ratios for each relation as
a function of buffer size. (iii) We show that close to linear scale-up (about 3% from the ideal) can
be achieved in a distributed system, assuming replication of a read-only table. (iv) We examine
the effect of packing hot tuples into pages and show that significant price/performance benefit can
be thus achieved. (v) Finally, by coupling the buffer simulations with the throughput model, we
examine typical disk/metnory configurations that maximize the overall price/performance.
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1 Introduction

The TPC Benchmark C (TPC-C) {7, 9] is intended to model a medium complexity online transaction
processing (OLTP) workload. It is patterned after an order-entry workload, with multiple transaction
types ranging from simple transactions that are comparable to the simple debit-credit waorkload in
the TPC-A/B benchmarks [6], to medium complexity transactions that have two to fifty times the

number of calls of the simple transactions.

An important aspect of the workload is that is specifies skewed (i.e. non-uniform) access within
individual data types/relations. By contrast, the TPC-A benchmark assumes uniform access within
each relation/data type. The skewed access, which is typical for many OLTP workloads [4] allows

better use of the main memory database buffer by allowing it to capture the hot data items.

The benchmark specifies a non-uniform random number generatiow function ta be used for gen-
eration of tuple-ids. We provide ..sight into the distribution of this skew by simulating this function
as specified by the benchmark. The output »f this simulation specifies the skew at the tuple level,
yet most typical DBMS’s access and store data in pages. Therefore, to estimate the skew at the
page level we also simulate the function assur.ing tuples are packed sequentially into pages. These
results provide insight into the workload and help explain the miss rate results obtained in our buffer
simulations. In addition we use the distribution obtained from this simulation to guide us in packing

tuples into pages so that all tuples of similar "hotness” will be in the same page.

We assume the use of the LRU buffer replacement policy for the database buffer and simulate the
buffer pool to determine the expected miss rates for each relation. We use the miss rates obtained
from our buffer simulations as inputs to a throughput model. Using this model, we explore optimal
buffer sizes to minimize hardware costs. Finally, we consider the impact of running the benchmark
on a clustered/distributed database system, examining the impact of replicating one of the read-only

relations.

We focus only on the access patterns and processing requirements of the benchmark. We do not
consider terminal emulation, ACID properties, or pricing. When we present price/performance curves
we will only consider hypothetical costs of hardware and do not include considerations such as terminal
emulation or software maintenance costs as outlined in the TPC-C specification [9]. We describe the
benchmark transactions only in the level of detail required to model the workload, primarily in terms
of the access patterns and the number of database calls per transaction. Readers interested in details

such as which fields are retrieved and updated are referred to the benchmark specification,

The rest of the paper is organized as follows. In Section 2 we provide a synopsis of the TPC-C

workload, so that the paper is reasonably self contained. In Section 3 we present simulation results




for the non-uniform random number generation routines to determine the degree of accoss skew.
A description of our buffer model simulation including model results is contained in Section 4. A
throughvut model and price/performance results for both a single and « distributed svstem are given

in Section 5. Concluding remarks appear in Section 6.

2 TPC-C Workload Synopsis

This section gives a summary of the TPC-C workload. For a more thorough treatment see the
TPC C specification [9] and overview [7]. In this paper, we focus only on the access patterns and
processing requirements of the benchmark. For concreteness, we will assume a relational database
model, though most of the development is applicable to other data models. We first give an overview
of all five transaction types in the benchmark and then give a more detailed account of each of the

transactions in the following section.

2.1 TPC-C Overview

The TPC-C benchmark is intended to represent a generic wholesale supplier workload. The workload
is primarily a transaction processing workload with multiple SQL calls per transaction, but also has
two aggregates, one non-unique select, and a join. The workload specifies skew (i.e. non-uniform

access) at the tuple level for three of the relations.

Figure 1 shows the Business Environment Hierarchy of the TPC-C workload. This figure is a
reprocuction of that found in the TPC-C benchmark specification [9]. The overall database consists
of a number of warehouses. Each warehouse is composed of ten districts where each district has
3,000 (3K) customers. There are 100K items that are stocked by each warehouse. The stock level
for cach item at each warehouse is maintained in the Stock relation. Customers place orders that are
maintained in three relations: in the Order relation a permanent record of each order is maintained; in
the New-Order relation, pending orders are maintained and later deleted by a Delivery transaction; in
the Order-Line relation, an entry is made for each item ordered. A history of the payment transaction

is appended to the History relation.

The logical database design is composed of 9 relations as listed in table 1 and shown in Figure
2. In the table, W represents the number of warehouses. We make the assumption that only integral
units of tuples fit per page. The cardinality of the Warehouse, District, Customer, and Stock relations
scale with the number of warchouses. This is similar to the TPC-A benchmark where the cardinality

of the Branch, Teller, and Account relations scale with the number of branches. The Itemn relation




Table 1: Summary of Logical Database

Relation Tuple Tuples Per
Name Cardinality | Length 4K Page
warehouse W R9 bytes 46
district W * 10 95 bytes 43
customer W * 30K | 655 bytes 6
stock W * 100K | 306 bytes 13
itemn 100K 82 bytes 49
order 24 bytes 170
new-order 8 bytes 512
order-line 54 bytes 75
history 46 bytes 89

Table 2: Summary of Transactions

Transaction | Minimum % | Assumed % | Selects | Updates | Inserts | Deletes | Non-Unique Select | Joi
New Order * 43 23 11 12 0 0 0
Payment 43 44 4.2 3 1 0 0.6 0
Order Status 4 4 11.4 0 0 0 0.6 0
Delivery 4 5 130 120 0 10 0 0
Stock Level 4 4 0 0 0 0 0 1

does not scale with the number of warehouses. The Order, Order-Line, and History relations grow

indefinitely as orders are processed.

There are five transaction types in TPCC as listed in table 2. Further details of the specific
relations accessed and the access skew are given in Sections 2.2 and 3. The New Order transaction
places an order for 10 items from a warehouse, inserts the order, and for each item updates the
corresponding stock level. The Payment transaction processes a payment for a customer and updates
balances and other data in the Warehouse, District and Customer relations. The customer can be
specified either by a unique customer-id, or by a name. In the latter case, on the average three
customers qualify from which one is selected. When specified by customer-id, this transaction is of
comparable complexity to the TPC-A transaction. The Order Status transaction returns the status
of a customer’s last order. As in the Payment transaction, the customer may be specified by the
customer-id or by name. Each item in the last customer order is examined. The Delivery transaction
processes orders corresponding to 10 pending orders, one for each district, with 10 items per order.
The corresponding entry in the New-Order relation is deleted. Finally, the Stock Level transaction

examines the quantity of stock for the items ordered by each of the last 20 orders in a district.

Table 2 summarizes the transactions based on the percent of the workload each transaction

comprises, and the number of selects, updates, inserts; deletes, non-unique selects, and joins for a




relational model. There is a columr for minimum pereent of workload and 4 column for assnmed
percent of workload. The benchmark speeifies a minimum percent for all the transaction types excopt
the New Order transaction. The benchmark metric is the number of New Order transactions processed
per minute, hence, it is desirable to set the percent New Order as high as possible {15%) taking into
account that the size of the New-Order relation will grow without bound unless the relative rate of
Delivery transactions is sufficient to delete the entries in the New-Order relation at the same rate
that the New-Order transaction inserts them. The third column in the table is the percent of the
workload mix that we have assumed for all studies in this paper. We have assumed the percent of
Delivery transaction is 5% to ensure that the size of the New-Order relation remains small siuce our
simulations must maintain the contents of the relation as the simulation proceeds. Note. the percent
New-Order versus Delivery is a key parameter of this benchmark and should be tuned carefully to
achieve the maximuin New-Order transactions per second. If the percent New-QOrder is 15% and the
percent Delivery is 4% then the New-Order relation will grow without bound causing more misses on
the New-Order relation tn occur and a need for more storage. The join is an equi-join, where the two
relations involved each have at most 200 tuples that meet the selection predicate. Further description

of each of these transactions is found in section 2.2.

2.2 Transaction Access Patterns

In this section we summarize the access patterns for each database call of each transaction. For
each transaction we first list how the random variables are generated, and then list the database
operations made by that transaction in a simplified psendocode. Although our pseudocode is not in
SQL it succinctly conveys the function of each transaction. The TPC.-C specification includes sample
code [9] for each transaction. In the description of how the input data is generated many of the
tuple-ids are generated from the NU() function. We define and simulate this function in section 3.

for now just view this as a non-uniform distribution.

New Order Transaction

This transactions places an order that consists of an average of 10 items. The input is generated

as follows:

whouse-1d uniform

dist-id uniform
custormner-id NU(1023,1,3000)
number of items  uniform(5,10)
itern-id NU(8191,1,100000)

The benchmark specifies that there are 10 districts per warehouse, and each district has one
terminal. All transactions initiated by a terminal use that terminal’s district and warchouse number.

Since we are not explicitly modelling the termninals, we assuine the whouse-id and dist-id are uuniformly




distributed. This assumption is reasonable since each terminal is submitting requests at the same
rate.

Below we list the simplified format of the New-Order transaction:

1. Select(whouse-id) from Warehouse
. Select(dist-id, whouse-id) from District

. Update(dist-id, whouse-id) in District

2
3
4. Select(customer-id, dist-id, whouse-id) from Customer
5. Insert into Order

6. Insert into New-Order

7

. For each item (10 items):

(a) Select(item-id) from Item

(b) Select(item-id,whouse-id) from Stock
(¢) Update(item-id,whouse-id) in Stock
(d) Insert into Qrder-Line

8. Commit

In the benchmark, a district is associated with a specific warehouse, hence, the key used to
uniquely identify a district tuple is composed of two fields: (dist-id, whouse-id). Similarly, the key
used to uniquely identify a customer tuple is composed of three fields: (customer-id, dist-id, whouse-
id). In the benchmark the number of items ordered is uniformly distributed between 5 and 15. We
assume all transaction have a fixed number of items ordered equal to 10. This assumption also has no
effect on our results since we only report mean miss rates and throughputs. For each of the 10 items
ordered, the supplying warehouse is the local warehouse 99% of the time and uniformly distributed
among all the other warehouses 1% of the time. The implication of a having a remote warehouse
involved is that the tuple retrieved from the stock relation may be on a different node if the warehouse
is remote and the database is configured across a distributed system. We will assume that calls to

remote warehouses located on the same node incur the same overhead as a call to the local warehouse.
To uniquely identify a stock tuple the key has two fields: (item-id, whouse-id). A specific Stock tuple

contains the number of that particular item in stock at that particular warehouse. In addition, the
benchmark specifies that 1% of the transactions should be rolled back to simulate entry errors. We

ignore this aspect.
Payment Transaction

This transaction processes a payment by one of the customers. There are two cases. In the first

case, which occurs 40% of the time, ihe customer is selected by customer-id. In the second case,
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which oceurs 60% of the time, the customer is selected by last name. Due 1o the method specified
by the benchmark for the population of the database (each district has 3000 customers but onlv
1000 names). on average three customers will have the same last name, the actual customer chosen
is determined by selecting all customers with that name, sorting on the first name, and taking the
middle one. To define the accesses to the relation we will assume that this non-unique select has the

same overhead as 3 selects.

Regardless of the method used for selecting the customer. [5% of the transactions assume the
customer is paying through a warehouse other than the customer’s home warehouse. The input is

generated as follows:

whouse-id uniform
dist-id uniform
case 1 customer-id NU(1023,1,3000
case 2 customer-name NU(255,lbound,ubound)

Note that, in case two, the customer name is drawn from the NU funtion from Ibound to ubound. We
assume one of three (lbound,ubound) pairs are chosen with equal probability as (1,1000), (1001.2000).
(2001,3000). In actuality there are 1000 unique names per district and the remaining 2000 names are
uniformly drawn from these 1000 names. Hence, when a customer is specified by name on average
three tuples satisfy the predicate and are distributed across the 3000 tuples in some manner similar
to above. We have chosen the distribution above to keep the simulations simple. Below we list the
SQL calls made by the transaction in a simplified format.

1. Select(whouse-id) from Warehouse

2. Select(dist-id,whouse-id) from District
3. (a) Case 1: Select(customer-id,dist-id,whouse-id) from Customer

(b) Case 2: Mon-Unique Select(customer-name,dist-id,whouse-id) from Customer

b

Update(whouse-id) in Warehouse
Update(dist-id,whouse-id) in District
Update{customer-id,dist-id,whouse-id) in Customer

Insert into History

[o SR N« N S

Commit

Order Status Transaction

This transaction determines the status of a customer’s last order, returning information about the
customer, and a summary of the order. The customer is determined as in the Payment transaction,

i.e. 60% of the time by name and 40% by customer id.
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whouse-id uniform
dist-id uniform
case 1: customer-id NU(1023,1,3000)
case 2 customer-name NU(255,lbound,ubound)

1. (a) Case 1: Select(customer-id,dist-id,whouse-id) from Customer

(b) Case 2: Non-Unique Select(customer-name,dist-id,whouse-id) from Customer
2. Select(Max(order-id),customer-id) from Order

3. for each item in the order:
(a) Select(order-id) from Order-Line

4. Commit

The database call "Select(Max(order-id),customer-id) from Order” is the selection of the tuple in
the Order relation that is the most recent order placed by the customer. This could be implemented
as a max aggregate, or an order by descending order-id and return only the first tuple. Since the
Order relation keeps on growing without bound, both of these approaches could be expensive. This
could be implemented using an ordered multi-keyed index so that correct tuple can be fetched in just

one index look up. Hence, in our studies we assume this requires the overhead of a single select.

Delivery Transaction

This transaction processes a delivery. The transaction assumes that during a delivery the oldest
order not yet delivered for each district within a warehouse is processed. Hence, there are really 10
deliveries per delivery transaction. The benchmark specifies that this transaction has less stringent
response time constraints ahd can be executed in batch mode, i.e. deferred execution. The only
input to the transaction is the whouse-id which is uniformly distributed. The transaction proceeds
as follows:

1. For each district within the warchouse (i.e. ten times):

(a) Select(Min(order-id),whouse-id,dist-id) from New-Order
(b) Delete(order-id) from New-Order

(c) Select(order-id) from Order

(d) Update(order-id) Order

(e) For each item in the order (i.e. ten times):

i, Select(order-id) from Order-Line
ii. Update(order-id) Order-Line

(f) Select(customer-id) from Customer
(g) Update(customer-id) Customer

2. Commit




The database call “Select(Minfoader-idhawhouse idadist id) from New-Order™ i the wolocrion o
the tuple in the New-Order relation that is the oldest order for that district and warehon e in the
New-Order relation. As in the Max select in the Order Status transaction. this vould he puplemented
using a multi-keyed index so that the correct tuple can be ferched in just one calls The customer id

used in the Select from Customer is obtained from the tuple in the Order refation.

Stock Level Transaction

This trapsaction determines the number of items sold by orders from the Tast 20 orders of &
specific district that have a stock level below a certain threshold. The inpeits are the distido which
is uniformly distributed, and the threshold. Below we quote the sample SQL code directly from the

tpce docuinent [9] so that we do not confuse the query by oversimplification.

SELECT d.next.oid INTQO :0.d
FROM District
WHERE dwid = :wid AND did = :ddid

SELECT COUNT(DISTINCT (sddd)) INTO :stockcount
FROM Order-Line, Stock

WHERE
olLwid = .wid AND
ol.did = :did AND oloid < :0id AND
oLoid > (:odd - 20) s.wid = :wid AND
sidd = oliid AND s.quantity < :threshold ;

In the above query, oLd.id specifies the dist-id attribute of a tuple in the orderline relation, oad is
the order-id attribute, i_id is the item attribute, and w.d is the warchouse attribute. The first sefoct
acquires the current order number for the district and places it in the variable todd. which stands
for order-id. Having obtained the current order-id for that district, the query computes a join of the

Order-Line and Stock relations to fiud the nnmber of distinct items ordered in the district’s [ast 20
orders which have a stock quantity below the specified threshold.

Assuming an index on the order-id field of the Order-Line relation and a two keved index on the
whouse-id and item-id of the stock relation, the query results in an average of 200 Ordcr-vine aind

Stock tuples each being fetched.

To summarize the access patterns of the five transaction we list the munber of aceesses to each
relation for each transaction type and the average number of accesses per transaction in Table 30 the
latter assumes the percentages for each transaction listed in Table 2. Within the tables the notation
{/{x) signifies that z tuples are chosen Uniformly from the relation. N7(r) denotes NonlUnitorm
random selection of z tuples using the NI function. A(r) denotes » tuples ere Appended to the
relation, and P(z) denotes x tuples are chosen where the tuples chosen were recently aceesses by

Past behavior (in other words there is a form of temporal locality). Note that the tuples aceessed




Table 3: Surmmary of Relation Accesses

Relation New Payment Order Debivery | Stork | Average
| Crder L Status Level
warehous” U 1) 0.87
| district v () P 0.93
customer NU(L) | NU(2.2) | NU(2.2) P({1v) 1.524
" stock NU(10) P{200) 124 |
item NU(10) 4.4
order All) P(1) P(10) 0.53
new-order Al P10} 0.49 2
order-line | A(10) P{10) P(100) | P(200) 13.3
history Al 0.43

by the Orler-Status, Delivery, and Stock-Level transactions are more likely to be buffer pool hits
since they are for tuples that have been recently put in the buffer pool by the New-Order transaction.
Many of the tuple-ids are generated from the NU() function. We define and simulate this function in

the next section.

3 Analysis of Data Access Skew in TPC-C

The TPC-C' benchmark assumes access to the tuples are skewed. i.e. within a relation some tuples
are referenced more frequently than others. In this section we define and simulate the non uniform
random number function, as specified by the TPC-{ documents, used for the generation of tuple
id’s. The non-uniforiu random number generating function, NU(), which we paraphrase from the

henchmark specification [9]. is defined as follows:

NU(A r y)=(Urand{0, A) | rand(r,y))+ CYWily - )+ r (1
where:

o randomi{x.v)denotes a uniformly distributed integer random nnmber in the closed interval Ixovi
e ("is a constant within [0..A].

o A is a constant chosen according to the size of the range [x..y],

(N % M) stands for N modulo M,

and (N | M) stands for the bitwise logical OR of N and M.
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For the remainder of this paper we assume O equals zero (the TPCC standard document adlows
an arbitrary choice of (" within [0..A]). We choose A and v accarding to the specifications for the

tuple id being generated,

First we consider accesses to the stock and item relations. Al tuple id’s for aceessing these
relations are drawn from the NU(8191,1,106000) distribution. In Figure 3 we plot the probability
mass function (PMF) for this distribution as obtained from simulating one billion samples. The plot
shows the non-aniformity in access and the periodicity of the access probability in the first parameter
(2191} of the NU function above. The number of cyeles equals the (floor of the) third parameter
divided by the first parameter of the NU function, or 12 cycles for this case. In the Appendix we
show that if the third parameter of the NU function is a power of two, then these cycles are exact,
and we derive a closed form expression for the resulting PMF. Figure 3 is hard to iuterpret because
of the large number (100.600) of points: hence, we plot the same distribution for tuples 1 to 10.000

in Figure 4. In this figure, the non-uniformity within a cyvcle (8191 points) is clear.

While the non-uniformity of access is apparent in Figure 4, the degree of skew is not clear. Let
e, be the probability of accessing tuple 1. Let 3; be the fraction of the relation represented by that
tuple. Note 3, = 3, ¥ i,j for stock tuples. In Figure 5 we order the tuples by increasing order of
« {increasing order of hotness) and plot 3 a; versus ¥ /3, i.e. the cumulative probability of access
versus the cumulative fraction of the relation. If a relation has no skew the curve would he linear,
hence the more convex the curve is, the more skew there is. For the moment ignore the top two
curves, and focus on the lower curve which represents the access skew at the tuple level. The graph
shows that 16% of the accesses go to about 80% of the tuples, or alternativelv, 81% of the accesses go
to about 20% of the tuples. There is even more skew in the tail of the distribution, so that about 71%
of the accesses go to about 10% of the (hottest) tuples and about 39% of the accesses go to about 2%
of the (hottest) tuples.

In most typical databases data is stored in pages, hence we need to determine the skew at the page
level. We first assume tuples are packed into pages in sequential order with the maximum number of
whole tuples that fit per page. We assume the remainder of the page is wasted. For the stock relation
13 (26) tuples fit in each 4K (8K) page.

Again, we order the pages by frequency of access and plot the cumulative probability of access
versius the cumulative fraction of the database in Figure 5 (top two curves). The top curve is tor an
SKByte page size and the second curve is for a 4KByte page size. For a 1KByte page size. we see
that 25% of the access go to 80% of the data, or viewed the other way 75% of the accesses go to
20% of the data. This is similar to the so called "80-20" rule where S0% of the accesses go to 2000 of
the data. Again, there is a more skew in the tail of the distribution and about 39% of the accesses
go to about 10% of the hottest pages, and about 287 of the accesses go to about 2% of the pages.

The smaller page size results in more skew than the larger page size since there is less of a chance to

1




spread out the hot tuples among the pages

The milder skew at the page level leads to the question of whether the tuple level skew car be
obtained at the page level. Packing tuples into pages in sequential order spreads out hot ruples
among all the pages of the relation. A simple optimization is to first sort the tuples from hottest 1o
coldest and then pack them into pages in that order. Since the distribution parameters for TPC.C
are know a priori and are static in time, this could be done. {In this context we note that the TPCC
standard (Clause 1.4.1) allows clustering of tuples within pages.) This technique would also work for
any workload where we know the distribution of accessing tuples within the relations of the database,
and where the distribution does not vary with time, {We note, however, that in many real workloads,
while there is considerable skew in data access, the access distribution is often not static in tiine.)
The bottom curve in Figure 5 is the resultant skew when this optimized packing of tuples s used.
and is virtually indistinguishable from the tuple level skew. Hence. the optimized packing results in
more skew at the page level which should result in lower miss rates in the buffer pool. As a further

note, this optimized tuple to nage packing approach was insensitive to page size.

Accesses to the item relation exhibits a similar skew except there is less skew for the non-optimized

packing approach since 49 (99) tuples fit per 4K (8K) page.

Access to the customer relation ‘s tess skewed than the stock and item relations since tuples
are accessed by both tuple-id and customer-name. Hence, there are two different access patterns
which are superimposed upon the relation. If the customer-id is used as the selection key. one
tuple is selected from the NU(1023,1,3000) distribntion. If the customer-name is used, we make
the simplifying assumption that the customer name is selected fron, one of the NU(255.1.1000),
NU(255,1001,2000) and NU{255,2001,3000) distributions with equal probability. Hence, as can be
derived from the transaction access patterns as specified in section 2.2, 41.86% of the accesses to
the customer relation use the NU{1023,1,3000) distribution and 58.14% are divided equally among
NU(255,1,1000), NU(255,1001,2000), and NU(2001,3000) distributions. In Figure 6 we plot the PMF
for the customer relation and in Figure 7 we plot the Y a; versus ). 3. We note that there is

consideranly less skew for the customer relation than for the Stock relation.

4 LRU Buffer Simulation

In this section we outline our buffer simulation model and present miss rates obtained from onr model.
We simulat~d the buffer nool for the TPC-C benchmark assuming an LRU replacement policy. We
hypothesize that more sophisticated replacement policies could result in an even larger difference
hetween optimized packing of tuples and non-optimized packing of tuples since they shonld he able te
capitalize more on the access skew. In our simualations we collected confidence intervals using bateh

means with 30 batches per simulation and a batchsize of 100,000 samples. Al results (e the miss
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rates of each relation) have confidence intervals of 5% of less at a 90% confidence lovel

[n the buffer model, we simulate transactions entering the svsten sequentially, and do not consider
the case where multiple transactions may be in the system at the same time. The presence of
concurrent transactions does not change the buffer hit ratio significantly because the fraction of pages
accessed by any traunsaction is small compared to the buffer size. We include concurrent transactions
in the throughput model in Section 5.1. When a transaction enters it is chosen as one of the five 1vpes
according to the distribution for each type. Each transaction generates tuple requests and inserts as
specified in Section 2.2. The simulation keeps track of the last order placed by each customer, the last
20 orders for each district, and which tuples are in the New-Order relation. This information is nsed
by the the Order-Status, Delivery, and Stock-Level transactions. The output from the simulation is
the miss rates for each relation summed over all transaction types, and also the miss rates for the
accesses by the Order-Status, Delivery, and Stock-Level transactions in isolation to be used as inputs

for the throughput model.

In Figure 8 we plot the miss rates versus the buffer size for the Stock., Customer. and Item
relations. The other relations all have significantly lowe. miss rates. We include curves for both the
sequential packing of tuples into pages and the optimized packing of tuples. The curves are, from
top to bottom, the Customer relation, Stock relation, and Item relation. For each of the relations,
the optimized packing of tuples results in significantly lower miss rates. There are two reasons why
the Customer relation exhibits a larger miss rate than the Stock relation even though the Cus.omer

relation is the smaller of the two. The first is that the customer relation has less skew as show in
Section 3. The second is that the stock relation is accessed more frequently as show in table 3.

The item relation has a much lower miss rate since the relation is much smaller than the stock and
customer relations due to the fact that the item relation does not scale with the number of warehouses.

The optimal packing approach results in significantly lower miss rates than the sequential packing
approach. For example, the miss rate for the stock relation for a buffer size of 320 15 30% lower in
absolute terms for the optimized packing approach than for the sequential approach, The miss rate
for the stock relation averaged over all buffer sizes considered is 13% lower in absolote terms for
the optimized packing approach than for the sequential approach. This significantly lower miss rate
translates directly to a lower [/O rate and hence better performance. Similar tmproverents are seen

for the Customer relation miss rates and to a lesser extent for the e relation.

We assume 20 Warehouses at a node. The reason for choosing the case of 20 Warehouses relates
to the throughput model in Section 6, where it is estimated that about 20 Warehonses could he
supported by a 10 MIPS processor. Bevond a sufficiently lTarge number of warchouses, the buffer
hit characteristics approximately scale with the nnmber of Warelhouses. The reason that the scaling
is not exact js that the item relation does not scale with the vumnber of Warchouses, hat it offecy
diminishes with an increase in the number of Warchonses. The Warehouse and District relations are

sufficiently small that they fit in the buffer (miss rate 0%) for all simulations considered.
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Table 4: Throughput Model Summary : Single Node

resource parameter n | overhead NewOrder Payment Status Dehvery Stock
Vy V2 Vi vy Ve
CcPu select 1 20K 23 4.2 13.2 130 1
CpPU update 2 20K 11 3 0 120 [i]
cpu insert 3 20K 12 1 0 ¥ 3]
cpPu delete 4 20K 0 0 0 10 i)
I CPU commit 5 40K T 1 1 1 i !
CpU imtlO 6 5K 1+ me 142.2(mc) 2.2{m¢) 1+10(me+mo+mn) | 2000nus+mi)
+10(mt + mis) +mo+10{(ml) +130{ml)
[G S application 7 01K 47 8 13 261 3
CcpU send/receive 8 15K 0 0 0 /] 0
cpPU prepCoinmit 9 40K [4 [4] 4] 0 [}]
cpu initTransaction 10 50K 1 1 1 1 i
[@Y releaseLocks 11 35K 1 i 1 ] 1
P non-unique-select | 12 50K 0 0.6 0.6 a ]
cpU join 13 2000K 0 0 4] 0 1
disk i0o 14 25ms mc 4+ 10(mi + ms) 2.2{mc) 2.2(mc) 10(mc+mo+mn) 200(ms+ml)
+mo+10{ml}) +130(ml)

5 System Model and Performance Estimates

5.1 Throughput Model Description

In this section we describe our throughput model. The parameter values used in the model are
similar to those in [3, 5]; they do not reflect any particular system, but are intended to be somewhat
representative. The objective is to identify trends rather than providing specific throughput or price-
performance estimates. Our model incorporates both the CPU and the data disks. We assume that
the system is configured with a sufficient number of disk arms to ensure disk arm utilization remains

below 50% and hence the CPU is the bottleneck.
the average CPU demand per transaction, divides by the MIPS rating of the processor, and then

To calculate CPU utilization the mode]l sums

multiplies by the throughput. Our primary metric is maximum throughput which we obtain by fixing
the CPU utilization and calculating the throughput. To calculate the disk utilization we sum the
average disk demand per transaction in milliseconds, divide by the number of disk arms, and then

multiply by the system throughput. We assume that there is a separate log disk.

In table 4 we summarize the assumed parameter vahics and visit counts for each transaction type
for a single node system. The columu label n is the subscript of the parameter. In the equations
below we will use o, to denote the overhead for a parameter n call. We define visit count as the
number of times a transaction requires a certain operation per transaction type. The visit counts are

in the columns heading V) ... V5. We define V7, to be the visit count for transaction ¢ to operation j.

Most of the parameters in the table are self evident from the names with the following possible
exceptions. The parameter application is for application code hetween SQL calls, the parameter

send/receive is for the CPU overhead at one node to send and receive a message across the network.
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the parameter release Locks is for the release lock portion of the comumit phase. prepComanit 1= for
the prepare to commit portion of a 2 phase commit. and it/ is the CPU overhead for initinting
an 1/O. The overhead for releasing locks is obtained by summing the overhicad to release read locks
and write-locks times the number of locks held by each transaction tyvpe weighted by the perceut of
the workload comprised by each transaction type. We assume an overhead of IK instrictions for

releasing each lock.

The parameters mc, mi, ms, mo, and m! found in Vg and V14, ¢ € 1....5, are the miss rates
for the Customer, Item, Stock, Order, and OrderLine relations respectively. These miss rates are
obtained from the buffer model. Note that for completeness we conld have also included the miss
rates for the Warehouse, District and New-Order relations in the performance estimates, but these

miss rates are always negligibly small and hence are omitted from the table.

The overhead for the non-unique select is based on the fact that on average three values are
returned and need to be sorted. The overhead for the join is estimated as follows. On average there
are 200 itemns ordered by the last 20 order transactions and hence a range scan returning an average
of 200 items is invoked to create a temporary table for the outer relation. Each one of these tuples
will join with exactly one tuple from the inner relation. Assuming that appropriate indexes exists on
the inner relation, each outer relation tuple requires an indexed select on the inner relation. Finally,
the result must be sorted to eliminate duplicate items. We assume the overhead for the range scan is
5K per tuple, the overhead for the indexed select is 5K instructions per tuple, and the overhead for
the final sort is 40K resulting in a total CPU overhead of 2040K instructions.

In table 6 we summarize the visit counts which differ from the single node case for a distributed
environment when the Item relation is replicated across all nodes, i.e. we include remote calls and
distributed commits, In table 7 we summarize the visit counts assuming the Item relation is not
replicated. The visit counts for the Payment transaction are the same for both replication and no
replication since the Payment transaction does not access the Item relation. Note that only the New-
Order and Payment transactions differ from the single node case since the other transaction only

access local warehouses as specified by the benchmark.

The notation found in tables 6 and 7 is defined in table 5. The values for these terms are derived in
Appendix 1.

We first exp'ain the terms when the Item relation is replicated, i.e. table 6. In this case all
accesses to the Item relation are local because the relation is accessed read only. We assume that

the distributed Concurrency Control (CC) protocol allows retention of read locks across transactions.

and only requires a broadcast/semicast when acquiring an exclusive lock. ?

2Such a distributed CC protocol is optimized for read-only sharing of replicated data, and fares poorly when there
is significant write sharing. Many distribnted CC protocols with replication are optimized for significant write sharing,

and consequently are warse for read-only sharing. See {1, 2] for a good summary of distributed CX(* protocels and (3] for
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Table 5: Definition of Notation

[ symbol meaning |
RCyo0k expected number of calls for obtaining and updating stock tuples
RCoysy axpected number of calls for obtaining and updating customer tuples
RCitern expected number of calls for obtaining and updating item tuples
Ustock expected number of unique remote sites that supply stock tuples
Usust expected number of unique remote sites that supply customer tuples
Uitem expected number of unique remote sites that supply item tuples
Uitem+stoct  expected number of unique remote sites that supply item or stock tuples
Lytock probability that all stock tuples are supplied from the jocal warehouse

The visit counts for four parameters change: commit. send/receive, prepCommit. and initiO.
Although portions of these overheads actually occur at the other nodes, all the other nodes will be
using the modeled node for remote calls, so by symmetry we can sum the overhead at the modeled

node.

We first consider the NewOrder transaction. The only remote calls are for retrieving and updating
stock tuples. The number of remote nodes involved in a 2 phase commit is Usper. The visit counts for
commit and init]Q are each increased by Usoer since a commit must be done at each node involved.
The count for prepCommit is changed from zero to Usyoer + 1 — Lgiock since the prepare portion of
the two phase commit must be done at every site plus the coordinator minus the probability that the
transaction is purely local. The count for send/receive is change from zero to 4 Usppetr + 2 RCipp0k
since we assume 2 round trip messages must be sent to each unique remote node involved in the 2
phase commit, and one round trip message for each remote call for retrieving or updating a stock
tuple. Note the multiplier is 4 for Ugoek (2 for RCyycr) not 2 (1) since we model the overhead at all

nodes involved on the coordinator by symmetry arguments.

For the Payment transaction the only remote calls are for obtaining and updating customer tuples.
The number of unique remote sites involved in a two phase commit for the Payment transaction is
Ucust. The new visit counts for the payment transaction are found in table 6 and are expressed in

terins of the expectations expressed above.

We now explain the terms when the Item relation is not replicated, i.e. table 7. The visit counts
for the Payment transaction are the same as for the replicated case since the Payment transaction
does not access the item relation. The visit counts for the NewOrder transaction differ since the 10
retrievals of the item tuples may require a remote call in addition to the remote calls for stock tuples.
The item tuples are accessed read only, hence a 2 phase commit is need only for those nodes supplying
a stock tuple. The number of remote nodes involved in the 2 phase commit is Uy, Thus, the visit
counts for initlO and prepCommit are the same as when the item relation is replicated. A 1 phase
commit is necessary at each node that supplies an item tuple but no stock tuples. Hence, the number

of nodes involved in a 1 phase commit is Ujpen, = Uspockritem — Ustock. Relative to the replicated case,

an analytical comparison of distributed CC with data replication.




Table 6: Throughput Model Summary : Multi Node with Replication

resource | parameter | n | overhead NewQrder Payment
Vi by
CPU commit 5 30K P+ Ustock I SR
CPU initlO 6 5K 14+ me 14 22me
+10(mi + ms) F st
+Uatock +Ueust
CPU send/receive | 8 10K 4 Ustock 2 RCeyst
+2 Rcstock +4 Ucust
CPU { prepCommit | 9 15K Ustock + 1 Ueust
_Latock

the visit count for send/receive is increased by RCjqe,, for obtaining item tuples and by 2Ue., for the
round trip message necessary for each node that participates in a one phase commit. The visit count
for commit is changed to include commit overhead at all remote nodes Usiockpstern, Whether they be

involved in a 1 phase or 2 phase commit.

Let V; , equal the visit count of a type i transaction to the CPU as a type n request. The values
of V; » are obtained from tables 4, 6, or 7 depending on whether the system being modeled is a single
node system, distributed system with the Item relation replicated, or a distributed system without
replication of the Item relation. Let A equal the system throughput and «; denote the fraction of the
workload from transactions of type i. The utilization of the CPU is calculated as:

MTEITi P o Vi o)

Utilcpy = YIPS (2)
Let DA = the number of disk arms. The utilization of the disk is calculated as:
. =30 Viga - o1 .
Utilgis = A = DA (3)
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Table 7: Throughput Model Summary : Multi Node No Replication

resource parameter | n | overhead NewOrder
Vi
CPU commit 5 30K 1 + Ustock +item
CPU init1O 6 5K 1 + me + 10(mi + ms)
+Uuock

CPU | send/receive | 8 10K 2RCst0ck + 2RCitem
+ 4Ustock + 2Uitem

CPU prepCommit 9 15K Ua:ock + 1 - Lazock

5.2 Single Node Performance Estimates

In this section we present our results for a single node system running the TPC-C benchmark, for
the parameter values and assumptions given above. We assume the MIPS rating of the processor is
10 MIPS. We cobtain the maximum throughput by fixing the maximum CPU utilization at 80% and
calculating the throughput using the throughput model outlined above. We then obtain the number
of disks needed by fixing the maximum disk utilization at 50% and finding the minimum number
of disks such that disk utilization is less than or equal to 50%. Note that typical configurations
are designed so that the average disk utilization is lower than the 50% we assume, so as to take into
account variance in the disk load (for example see [8]). However, in a benchmark environment a higher
disk utilization may be permissible because of a smaller variance in the disk load. All experiments

assume a 4K page size.

In Figure 9 we plot the maximum throughput in new-order transactions per minute versus bufler
size. The curves from top to bottom are for optimized packing of tuples into pages and non-optimized

packing of tuples into pages.

The maximum percentage difference between the methods occurs at a buffer size of 44 megabytes
where the optimized workload results in a 2.5% higher throughput relative to the non-optimized
workload. The average throughput improvement (averaged over all 64 buffer sizes plotted in Figure 9
is 1.0% relative to the non-optimized workload. Hence, based on maximum thronughput there is little
incentive to pack all the hot tuples into separate pages versus just loading the database in sequential

order.

n Figure o plot the cost per transaction/minute versus buffer size, where we define cost as
In Fig 10 we plot th t t t f buff ! lef t
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the cost of the memory, disks (including suflicient storage space for all relations), and the processor.
We emphasize that this is not the cost as specified by the TPC-C benelunark sinec it docs not {neluide
software cost, maintenance cost, terminal cost, c¢te. The intent is to estimate the optimal databas
memory buffer size in the trade-off between memory and disks.  The storage cost is computed by
sumining the storage needs for the Warehouse, District, Customer, Stock, and ftem relations as
specified in table 1. Assuming 20 warehouses per node (which leads to about 80% CPU utilization).
the space required is 1.1 Gbytes. In addition, we must include sufficient storage for running the
benchmark for 180 8 hour days as specified by the benchmark. Each NewOrder trausaction inserts |
order tuple, and 10 order-line tuples. In addition each Payment transaction inserts one History tuple.
By multiplying the transaction rate times the number of bytes needed for these inserts we arrive
at approximately 11 Gbytes of disk space per node needed for storing these three relations. This
space requirement scales linearly with the throughput. We assume each 3 Gbyte disk costs $5000,
the processor costs $10000, and memory costs $100 per megabyte. Although these hardware costs
are debatable and will quickly be out of date, they enable us to present a methodology which can be
used for determining the optimal price/performance point. This method is beneficial in determining

how much memory versus disk arms the system should be configured with.

We first focus on the bottom two curves in Figure 10. These two curves do not include the storage
capacity needed for maintaining the Order, Order-Line, and History relations. The top curve of these
two is for a workload with sequential packing of tuples into pages, while the bottom curve is for the
case of optimal packing of tuples into pages (we will refer to this as optimal packing). The jagged
shape of the curves results from the adding of memory until the disk utilization drops sufficiently
to configure the system with one less disk and still have a utilization of less than 50%. The lowest
point on the y axis for each curve corresponds to the optimal cost/performance point and shows the
corresponding amount of database buffer memory. (Note again that this is not the entire system
cost.) The lowest points occurs for a 154 Mbyte buffer with a value of about $139/tpm for sequential
packing, and at 84 Mbyte with a value of about $107/tpm for the optimal packing case. Thus, the
optimized packing of tuples results in about a 30% improvement of price performance relative to

sequential packing.

The top two curves in Figure 10 include the the storage capacity needed for maintaining the Qrder,
Order-Line, and History relations. In this case, adding memory causes the disk utilization to drop
sufficiently to configure the system with less disks, but the required storage capacity precludes removal
of additional disks. A minimum of 4 disks are required for storage capacity requirements. The lowest
points occurs at a 52 Mbyte buffer with a value of about $167/tpm for sequential packing, and at 26
Mbytes with a value of about $154/tpm for the optimal packing case. Thus, the optimized packing
of tuples results in about an 8% improvement of price performance relative to seqiential packing.
Put another way, the system is disk bandwidth bound for memory sizes less than 26 megabytes (52)

for the optimized (non-optimized) case, and storage capacity bound for larger memory sizes. Hence,
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there is no benefit obtained from adding additional memory beyond these points. Note, given the rate
at which disk size is currently increasing the system will become disk bandwidth bound in the vear
future rather than storage capacity bound, in which case the cost/performance difference will become
closer to the 30% predicted when storage costs are not included. For example, when a $5000 6 Gbyte
disk is assumed the cost/performance improvement resulting form optimal packing is 20%. [f a 12
Gbyte disk is assumed the entire database fits on one disk and the cost/performance improvement is
30%.

From this simple model, we conclude that depending on the disk bandwidth to storage capacity
ratio, the (hardware cost)/performance ratio may be improved by up to 30% by careful loading of
the database, i.e. packing all hot tuples into the same set of pages. Note, this does not take into
consideration the cost of the software or software maintenance which when all lumiped tugether will

reduce the percent difference significantly.

5.3 Multiple Node System Estimates

In this section wo prescul vur iesuits for a multiple node distributed system running the TPC-C
benchmark. We assume each node contains 20 warehouses and all data pertaining to the node
(except the item relation in the non-replicated case) is located ¢ that node. We consider two cases.
The first case is when the item relation is replicated across all sites. Since the item relation is read-
only, replication protocols could be optimized for this case resulting in little/no overhead for replica
management. Note that in a real database this would not be a trivial task if the Item relation can
be changed. The second case assumes that the Item relation is not replicated, but rather partitioned
equally among the nodes. In this case, all accesses to the item relation will incur a remote call with
probability N-A‘%l, where N is the number of nodes in the system. In addition a one-phase commit

involving each node that supplies an item tuple is necessary.

In Figure 11 we plot the maximum throughput versus the number of nodes for a buffer size of 102
Mbytes. We only plot results for the optimized packing model; results for the non-optimized model
are similar. The top curve is for comparison purposes only, and represents a perfectly linear growth
in maximum throughput with the number of nodes. The second curve is for the case where the Item

relation is replicated, and the third curve is for the case where the Item relation is not replicated.

The benchmark scales almost linearly when the Item relation is replicated. This excellent scaleup
occurs because only 10% of the New-Order transactions and 15% of the Payment transactions involve
a remote warehouse. When the Item relation is not replicated the benchmark does not scale as well

since each New-Order transaction must make 10 (ﬁﬁi) remoted calls, one for each item ordered. The

replicated case has a 10, 30, and 39% higher throughput than the non-replicated case for 2, 10, and

30 nodes respectively. Hence, if the benchmark is to be run on a distributed system, replication of the
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Item relation will greatly improve ~vstem performance. We should emphasize that this assumes the
use of a concurrency protocol (CC) which ouly requires remote access only when acquiring exclusive
locks, i.e. the concurrency control (CC) protocol is optimized for read-only sharing so that no remote
calls are made for CC for the replicated item relation. If a protecol optimized for write sharing were
used, the performance would drop considerably. For instance if the primary copy protocol [2] were
used for replication, there would be little performance gain over the non-replicated systemn since locks

would have to be acquired remotely for each access.

The TPC-C benchmark specifies that for each item ordered in the New-Order transaction ouly
1% are stocked by a remote warehouse. In addition, the benchmark specifies that 15% of customers
making payment via the Payment transaction are making the payment through a remote warcehouse,
These specifications result in a very low percentage of remote calls and hence the good scale-ups
shown for the replicated case shown in Figure 11. We now examine the sensitivity of the results
to this assumption. In Figure 12 we plot the maximum throughput versus the number of nodes for
different probabilities of ordering items stcc~d by a remote warehouse in the new order transaction.
We see that if the probability of remotely stocked items increases to 1.0. the scale-up decreaszes by
about 44%. Note that even at a probability of remotely stocked items of 1.0, most of the accesses
are still local since only 43% of the transactions are New-Order transactions, and of these only the
ten stock tuples selected are remote; the warehouse, customer, district, and 10 item tuples selections
are all local. The TPC-C benchinark favors distributed systems by having a very small percentage of

remote calls.

6 Summary and Conclusion

In this paper we modelled the TPC-C benchmark for single node and multiple node distributed
database systems. One key difference of the TPC-C benchmark, from the debit-credit benchmark
of TPC-A, is that it includes significant skew (i.e., non-uniform access) within several key relations.
By contrast, the TPC-A benchimark has uniform access within each relation, and in particular, each
account in the large account relation is accessed with equal probability. As a cousequence, in TPC-A
each account tuple is accessed infrequently and it is not beneficial to hold them in a memory buffer.
Therefore, one focus of this paper was to quantify the access skew in the TPC-Ct benchmark. and to

examine it’s impact on the optimal system configuration, price-performance and scalahility.

To this end, we first quantified the tuple data access skew as specified in the benchmark. Consider
the stock relation as an example for quantifying the access skew. At the tuple level we found that
about 84% of the accesses go to about 20% of the hottest stock tuples. There is even more skew in
the tail of the distribution, so that about 39% of the aceesses go to about 2% of the (hottest) tnples.
Since the database buffer is typically organized as pages, we next examined the skew at the page

level. If tuples are inserted sequentially by key {or randomly) then hot tuples are scattered among

20




the pages in the database. As a conscquence, the skew at the page level is milder than that at the
tuple level. Specifically, about 75% of the accesses go the hottest 20% of the pages. Again. there is
a more skew in the tail of the distribution and and about 28% of the accesses go to about 2% of the
pages. We then considered clustering the ho uples into the same pages in an optimal manner. This
is possible for the TPC-C benchmark because the access probabilities are static in titme and known
a-priori. If this were done, the resulting skew at the page level is about the same as that at the tuple

level, in term< of the fraction of accesses that go to any specific fraction of data.

Having quantified the access skew, we examined the buffer hit ratio versus buffer size character-
istic, assuming an LRU buffer replacement policy. We quantified this for each relation, both for the
case of sequential assignment of tuples to pages and for that with hot tuples clustered within pages.
Significant differences in the buffer hit ratio was found for these two cases. The specific hit ratios
and the difference for the two cases differs for different relations. In absolute terms it is largest for
the customer relation, but the higher frequency of access to the stock relation makes ¢Lis relation

dominant.

The results of the buffer model were fed to a throughput model to examine the overall throughput
and optimal memory and disk configuration. The access skew makes the results rather different from
that for the TPC-A benchmark where, as outlined above, buffering any of the account tuples is of
little value. For the TPC-C case, almost all the item tuples, the hotter stock tuples, and some of
the customer tuples are buffered in the estimated optimal configurations. The optimal configurations

depend on the specific costs of disks and memory, specific estimates are given in Section 5.2.

We also found that depending on the disk bandwidth to disk storage capacity ratio, packing hot
tuples into pages may result in significant benefits in terms of price-performance. We note, however,
that this observation applies only to a workload where the access probabilities do not vary with time,
and where they are known a-priori. In this sense, the TPC-C benchmark is not quite representative

of many real workloads, where often neither of these conditions apply.

Finally, we examined the scalability of the TPC-C workload in terms of how the throughput
can be expected to grow with the number of nodes in a distributed database system. Like the
TPC-A benchmark, the TPC-C benchmark is largely partitionable, and close to linear scale-up in
the number of nodes can be obtained. This assumes that the read-only item relation is replicated
across all nodes, and that no remote communication is needed for concurrency control for access
to this read-only relation. Specifically, if the Item relation is replicated, there are fow remote calls
in the workload. In the New-Order transaction on average 0.1 stock tuples accessed and updated
are from a remote warehouse. Since the New-Order transaction selects 23 tuples these 0.1 remote
calls comprise only 0.4% of the New-Order transaction workload. In the Pavment transaction 0.33
(0.15 « 2.2) customer tuples accessed are from and wpdated are from a remote warehouse. Since the
Payment transaction selects 4.2 tuples these 0.33 remote calls comprise only 7.9% of the Pavment

workload. The Order-Status, Delivery, and Stock-Level transactions access 11,1, 1300 and 107 taples
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respectively. Hence, once weighted by the percentage of the workload only 0.534% of the accesses are
to remote data. This low fraction of remote access should be carefully considered when using the

TPC-C benchmark to assess the performance of a distributed or clustered database systew,

In a real environment, the item relations would be updated albeit infrequently, and provision
would have to be made for this. If a general concurrency control protocol was used for this, e.g. the
primary copy appryoa,c.h, or if the item relation is not replicated, then the scale-up as a function of the
number of nodes is significantly lower, as we have quantified. Even so, the fraction of remote calls
is rather small. While we have focussed on examining the TPC-C benchmark, the methodology we

have used has more general applicability.
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Appendix A Derivation of probabilities for throughput model

In this appendix we derive the expected number of remote requests and unique sites involved for a

distributed system. These terms are nsed in Section 5.
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We first derive the probabilities assuming the Item relation is replicated and then derive 1he
I g ]

probahilities assuming no replication.

Appendix A.1 Item relation is replicated

When the item relation is replicated requests for item tuples are always local. The only remote
accesses possibly needed are for stock tuples by the NewOrder transaction and for customer tuples by
the Payment transaction. We first consider the NewOrder transaction. The NewOrder transaction
requests 10 stock tuples, each tuple belonging to a remote warehouse with probability 0.01 as specified
by the benchmark. Assume there are .V nodes in the system. Let P[S,] be the probability that j of

the 10 stock tuples accessed are remote.

P[S)} = ( 1;’) (Psy (1 = Ps)'® (4)

where Ps = 0.01 (—\—,\;‘), and N is the number of nodes in the system. The term 0.01 is the probability

that an individual stock tuple is from a remote warehouse, and N_\:l is the probability that the remote

warehouse is located on a remote node. We make the simplifying assumption that requests to remote

warehouses located on the same node require the same overhead as a Jocal request.

Let E[R;] be the expected number of remote stock tuples retrieved made by the New-Order transac-

tion.

[ |
—

10
E[R))=)_ j P[S)] (:
=0

Each tuple retrieved is also update, hence the expected total number of remote calls by the NewQrder

transaction for reading and writing stock tuples is
RC ok = 2 < E{Ry] (6)
Let Ly, be the probability that all stock tuples are referenced locally.

10

Lstock = (1 — Ps) {(7)

The number of remote sites involved in the transaction is the number of unigue sites fram which

stock tnples are obtained. We derive this expectation, (7,4 in the following theorem,
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Theorem:
ot = S0 PISI Y -1 [1 - (823)]

Proof:

Assume the system has N rodes, and that a site generates j remote requests. With out loss of

geunerality, assume the originating site to be node 1.

Let [;, 1 € (2...N) be an indicator variable for the event that node ¢ supplies at least one tuple. A
remote request is satisfied by one of the N — 1 nodes with equal probability, hence the probability

that a node supplies at least one tuple (the probability that the indicater variable is 1) is

The expected number of unique sites supplying tuples is
S ho= -n[i- (32)]
Unconditioning on the number of remote requests, j, results in the expected number of unique sites:
Ustock = Y120 PLS;1 (N = 1) [1 _ (%ETZ)]}

We now derive the expectations for the Payment transsction. The only remote accesses are for
tuples from the customer relation. The customer is from a remote warehouse with probability 0.15.
The customer is selected based on customer-id 40% of the time (hence one tuple is selected), ard
based oun customer-name 60% of the time [hence three tuples are selected). In addition. once the
tuple has been selected the update must be written back to the remote node. Hence, the expected

number of remote calls for obtaining and updating customer tuples, R('..;,, is:

RC .o = 0.15 (ﬁ—;—% [0} 1)+ (0.6)(3)+ 1] {%)

At most one remote site may be involved and hence the expected number of unique remaote sites from

which customer tuples are obtained, I/, is:
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Appendix A.2 Item relation not replicated

We now derive the expectations assuming the item relation is not replicated. The expectations for
the Payment transaction are the same as for the replicated case since the Payvment transaction does

not access the [tem relation.

For the NewOrder transaction the number of remote calls for stock tuples. K., expected
number of unique sites supplyin:, stock tuples, Uspoex, and the probability that all stock tuples are
supplied locally are the saine as when the item relation is replicated. The difference from the replicated
case is that the 10 item tuples retrieved may be remote since we assume the item relation is uniformly

distributed among the N nodes.

Let P[{,] be the probability that j of the 10 item tuples accesses are remote.

P} = ( l]()) (PrY (1 = Pp)!o? (10)

where Py = %}l is the probability that an item tuple is located on a remote node. and .V is the

nutuber of nodes in the system. Let E[R;] be the expected number of remote item tuples retrieved

made by the New-Order transaction.

ElR) =Y 5 PlL] (n
1 =0

The number of remote calls for item tuples, RCijer,, is equal to E{R/] since the tuples are not updated.

Let {7, be the expected number of uniqua remote sites involved for fetching the remote item tuples.

This expectation is derived as in theorem 1.

19 N -2\’
U,‘gem = Z P[l]](N*‘ 1) l:] - (}v"*:‘“{) ] (12)

=0

In addition to Uggex and Ujpen, we need the expected total number of unique nedes referenced the
NewOQrder transaction, Ugockyitem. The expected number of unique sites given j stock tuple requests

and k item tuple requests is equal to
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Hence, upon unconditioning on 7 and k,

10 10

, N =2\t
e s o[- (G2

7=0 k=0

Appendix A.3 Proof of Perodicity of the NURand Function

In this appendix we show that the NURand(x,0,y) function is peridoc if boik r and y are a power of
2, r < y. Although the function is not exactly peridoc when y is not a power of 2. we have observed
it to be close to periodic.

NURand(z,0,y) = ((random(0,z) | random(0,y))%y) (1)
where

random(x,y) denotes a uniformly distributed integer random number in the closed interval [x..v]
(N % M) stands for N module M
(N | M) stands for the bitwise logical OR of N and M
Letz=2"-landy=2"-1,b>a
Let z =b— =z,
Let A = Ay_y Ay_2 ...Aq be the binary representation of the number drawn from random(0.x).
Let B = By_; By_3 ... Bp be the binary representation of the number drawn from random(0.y).
Note that if X > 0, then the top 2 bits of A will all be zero.
Let P[A;] denote the probability that bit A, is set to one. Then,
PlA)=1,1€(0,1,.. (a—1))
PlA]=0,i>a
PlBil=1,1€(0,1,...(b=1))
et O = AIB = Oy Cyp ... Cp. Since A and B, are independent for all i, bit €7, is set if either 4,

or B, or hoth are set. Hence,

26




PIC]

H

(PlA)* PIB) + (1 = PlA]) + P[B)) + (P[] + (1= P[B]))
PlC=30€e(0...(a- 1)) PIC"] = F.i€(a....(b— 1))

Thus, the the probability of accessing a specific tuple-id generated from the NURand(x.0.v) function
is (%)i( %)j(%): where i equal the number of non-zero bits in the low a bit. jis the number of zero bits

in the low a bits, and z is as defined above. Heunce, the probability mass function is periodic where

the size of the period equals z, and the number of periods equals [ £].
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